Extensions 1→N→G→Q→1 with N=C32 and Q=D18

Direct product G=N×Q with N=C32 and Q=D18
dρLabelID
D9×C3×C6108D9xC3xC6324,136

Semidirect products G=N:Q with N=C32 and Q=D18
extensionφ:Q→Aut NdρLabelID
C32⋊D18 = C32⋊D18φ: D18/C3D6 ⊆ Aut C321812+C3^2:D18324,37
C322D18 = C2×C32⋊D9φ: D18/C6S3 ⊆ Aut C3254C3^2:2D18324,63
C323D18 = C2×C322D9φ: D18/C6S3 ⊆ Aut C32366C3^2:3D18324,75
C324D18 = S3×C9⋊S3φ: D18/C9C22 ⊆ Aut C3254C3^2:4D18324,120
C325D18 = C325D18φ: D18/C9C22 ⊆ Aut C32364C3^2:5D18324,123
C326D18 = C3×S3×D9φ: D18/D9C2 ⊆ Aut C32364C3^2:6D18324,114
C327D18 = D9×C3⋊S3φ: D18/D9C2 ⊆ Aut C3254C3^2:7D18324,119
C328D18 = C6×C9⋊S3φ: D18/C18C2 ⊆ Aut C32108C3^2:8D18324,142
C329D18 = C2×C324D9φ: D18/C18C2 ⊆ Aut C32162C3^2:9D18324,149

Non-split extensions G=N.Q with N=C32 and Q=D18
extensionφ:Q→Aut NdρLabelID
C32.D18 = C2×C27⋊C6φ: D18/C6S3 ⊆ Aut C32546+C3^2.D18324,67
C32.2D18 = S3×D27φ: D18/C9C22 ⊆ Aut C32544+C3^2.2D18324,38
C32.3D18 = C6×D27φ: D18/C18C2 ⊆ Aut C321082C3^2.3D18324,65
C32.4D18 = C2×C27⋊S3φ: D18/C18C2 ⊆ Aut C32162C3^2.4D18324,76

׿
×
𝔽